Peer-reviewed research articles

  • Ledezma DK, Balakrishnan PB, Shukla A, Medina JA, Chen J, Oakley E, Bollard CM, Shafirstein G, Miscuglio M, Fernandes R. "Interstitial Photothermal Therapy Generates DurableTreatment Responses in Neuroblastoma," Advanced Healthcare Materials, 2022, doi: 10.1002/adhm.202201084.

    • IB-001 can be administered to deeper tumors via interstital laser illumination.​

  • Sekhri P, Ledezma DK, Shukla A, Sweeney EE*, Fernandes R*. "The Thermal Dose of Photothermal Therapy Generates Differential Immunogenicity in Human Neuroblastoma Cells," Cancers, 2022, doi: 10.3390/cancers14061447.

    • IB-001 generates different immune responses in neuroblastoma cells based on their intrinsic biology.

  • Balakrishnan PB, Ledezma DK, Cano-Mejia J, Andricovich J, Palmer E, Patel VA, Latham PS, Yvon ES, Villagra A, Fernandes R*, Sweeney EE*. "CD137 agonist potentiates the abscopal efficacy of nanoparticle-based photothermal therapy for melanoma," Nano Research, 2021, doi: 10.1007/s12274-021-3813-1.

    • IB-001 + anti-CD137 antibodies effectively treats melanoma that is resistant to immune checkpoint inhibition.​

  • Shukla A, Cano-Mejia J, Andricovich J, Burga RA, Sweeney EE, Fernandes R. "An Engineered Prussian Blue Nanoparticles‐Based Nanoimmunotherapy Elicits Robust and Persistent Immunological Memory in a TH‐MYCN Neuroblastoma Model," Advanced NanoBiomed Research, 2100021, 2021.

    • IB-002 is effective in a clinically relevant mouse model of neuroblastoma.​

  • Cano-Mejia J, Shukla A, Ledezma DK, Palmer E, Villagra A, Fernandes R. "CpG-coated Prussian blue nanoparticles-based photothermal therapy combined with anti-CTLA-4 immune checkpoint blockade triggers a robust abscopal effect against neuroblastoma," Translational Oncology, Vol. 13, No. 10, 100823, 2020.

    • Mice with two tumors were completely cured when only one tumor was treated with IB-002 in combination with immune checkpoint inhibition.

  • Cano-Mejia J, Bookstaver ML, Sweeney EE, Jewell CM and Fernandes R. "Prussian blue nanoparticles-based antigenicity and adjuvanticity trigger robust antitumor immune responses against neuroblastoma," Biomaterials Science, Vol .7, 1875-1887, 2019.

    • IB-002 enables immune cell recognition and response in mice with neuroblastoma.

  • Sweeney EE*, Cano-Mejia J* and Fernandes R. "Photothermal therapy generates a thermal window of immunogenic cell death in neuroblastoma, " Small, Vol. 14, No. 20, 1800678, 2018.

    • IB-001 can be tuned to stimulate an immune response in mice.

  • Cano-Mejia J, Burga RA, Sweeney EE, Fisher JP, Bollard CM, Sandler AD, Cruz CRY and Fernandes R. “Prussian blue nanoparticle-based photothermal therapy combined with checkpoint inhibition for photothermal immunotherapy of neuroblastoma,” Nanomedicine: Nanotechnology, Biology, and Medicine, Vol. 13, No. 2, 771-781, 2017.

    • IB-001 + immune checkpoint inhibition is effective in curing mice with neuroblastoma.

  • Sweeney EE, Burga RA, Li C, Zhu Y and Fernandes R. “Photothermal therapy improves the efficacy of a MEK inhibitor in neurofibromatosis type 1-associated malignant peripheral nerve sheath tumors,” Scientific Reports, Vol. 6, No. 37035, 2016.

    • IB-001 can alter typical cancer-associated signaling pathways and is effective for MPNSTs in combination with a chemotherapy.

  • Burga RA, Patel S, Bollard CM, Cruz CRY and Fernandes R. "Conjugating Prussian blue nanoparticles onto antigen-specific T cells as a combined nanoimmunotherapy," Nanomedicine, Vol. 11, No. 14,  1759-1767, 2016. ​

    • PBNPs can be conjugated to immune cells for combination therapy.​

  • Hoffman HA, Chakrabarti L, Dumont MF, Sandler AD and Fernandes R. “Prussian blue nanoparticles for laser-induced photothermal therapy of tumors,” RSC Advances, Vol. 4, No. 56, 29729-29734, 2014.

    • IB-001 can effectively treat mice with neuroblastoma.